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Steady planar flow of a liquid layer over an obstacle is studied for favourable slopes. 
First, half-plane Poiseuille flow is found to be a non-unique solution on a uniformly 
sloping surface since eigensolutions exist which are initially exponentially small far 
upstream. These have their origin in a viscous-inviscid interaction between the 
retarding action of viscosity and the hydrostatic pressure from the free surface. The 
cross-stream pressure gradient caused by the curvature of the streamlines also comes 
into play as the slope increases. As the interaction becomes nonlinear, separation of the 
liquid layer can occur, of a breakaway type if the slope is sufficiently large. The 
breakaway represents a hydraulic jump in the sense of a localized relatively short- 
scaled increase in layer thickness, e.g. far upstream of a large obstacle. The solution 
properties give predictions for the shape and structure of hydraulic jumps on various 
slopes. Secondly, the possibility of standing waves downstream of the jump is 
addressed for various slope magnitudes. A limiting case of small gradient, governed by 
lubrication theory, allows the downstream boundary condition to be included 
explicitly. Numerical solutions showing the free-surface flow over an obstacle confirm 
the analytical conclusions. In addition the predictions are compared with the 
experimental and computational results of Pritchard et al. (1992), yielding good 
qualitative and quantitative agreement. The effects of surface tension on the jump are 
also discussed and in particular the free interaction on small slopes is examined for 
large Bond numbers. 

1. Introduction 
The standing hydraulic jump, formed when a liquid layer adjusts abruptly ahead of 

an obstacle, has been the subject of much study and is of importance in civil 
engineering and the chemical industry, as well as being a fascinating phenomenon in 
its own right (see the works of Rayleigh 1914; Lamb 1932; Lighthill 1978). Until 
recently the jump has usually been treated as a discontinuity in the flow, with the 
internal structure ignored. Nevertheless, it has long been realized that the jump can 
take many different forms, be it two-dimensional or axisymmetric, incorporating for 
example separation from the bed, a roller at the free surface, waves downstream or all 
of these : see Larras (1962), Watson (1964), Clarke (1 970), Peregrine (1974), Craik et 
al. (1981), da Silva & Peregrine (1988). An important step forward in understanding 
this internal structure was made by Gajjar & Smith (1983) who derive boundary-layer 
equations describing the jump on a uniform velocity profile at high Reynolds number 
(see also Brotherton-Ratcliffe 1986). The dominant physics is an interplay, a so-called 
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viscous-inviscid interaction, between the hydrostatic pressure generated by the free- 
surface displacement and viscous effects in a sublayer at the wall. The flow can separate 
owing to the strong adverse pressure gradient caused by the rapidly increasing depth 
of the layer. Beyond, the free surface develops a blunt, approximately parabolic, shape. 
This is not unlike the axisymmetric hydraulic jumps measured experimentally by Craik 
et al. (1981) in which a falling jet of water strikes a horizontal plate, spreads radially, 
undergoes a jump and subsequently falls off the edge of the plate. Bowles & Smith 
(1992, which we will refer to as BS) extend the work of Gajjar & Smith (1983) and 
investigate the internal structure of the jump in fully developed flow on a horizontal 
surface and show that at large Froude numbers the flow is governed by the interactive 
boundary-layer equations (cf. Bowles 1990 on other Froude numbers). They 
incorporate effects of surface tension leading to encouraging quantitative comparison 
with these experiments. 

The pressure (P) driving the interactive boundary-layer equations is not prescribed 
as in the classical boundary-layer equations. Instead it is related to the boundary-layer 
displacement ( - A )  via a so-called pressure-displacement (P - A )  law (Stewartson 
1974, 1982; Smith 1982). For certain P - A  laws, including those relevant here, the 
boundary-layer equations are rendered elliptic by this interaction. This manifests itself 
in eigensolutions which are initially exponentially small upstream but which develop 
nonlinearly downstream (Lighthill 1953). This development is usually of two types. 
The pressure may increase, possibly leading to separation (a compressive interaction) 
or it may decrease, leading perhaps to a finite-distance singularity in the solution (an 
expansive interaction). These are known as free interactions. The initial amplitude of 
the eigensolution is dependent on the downstream boundary condition and if this 
condition is included the problem is described as a forced interaction. Typically, as the 
size of the disturbance increases, the forced solutions exhibit a free interaction far 
upstream. 

The position of the jump is not predicted by BS although they do indicate that 
viscous effects play a vital role in determining the structure and position of the jump 
in the experiments. The complete flow, apart from small regions about the jet and the 
edge of the plate, is governed by the interactive boundary-layer equations presented in 
BS with viscous effects felt across the depth of the layer. This has been realized by Bohr, 
Dimon & Putkaradze (1993) who treat the equations for the axisymmetric problem 
approximately, obtaining predictions for the jump radius by assuming that the flow 
downstream is governed by lubrication theory, with the effects of inertia reduced by the 
thickening of the flow as it passes through the jump. The jump itself is treated as a 
discontinuity. More recently Higuera (1 994) has treated the two-dimensional problem 
numerically. He obtains solutions for the entire flow including a region of rapid 
adjustment with a near-parabolic free-surface profile which emerges as the Froude 
number increases. He also investigates this limit analytically, expanding upon the work 
of BS, showing how the separated flow reattaches, and that the flow downstream of the 
jump is indeed governed by lubrication theory. With this knowledge an expression for 
the variation of the jump position and strength with Froude number is obtained. 

This paper concentrates on the interactive boundary-layer equations relevant to 
planar liquid-layer flow on a sloping surface. This work was originally undertaken as 
a preliminary to a study of the problem on a horizontal surface which has since been 
solved as described above. The advantage of this study is that the far-field boundary 
condition is of half-Poiseuille flow representing a balance of the viscous and the 
gravitational effects. This also implies that the Froude number is proportional to the 
product of the slope and the Reynolds number and is not a free parameter. The 
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corresponding problem for flow on a horizontal surface does not have a suitable 
solution at infinity, as this balance is not attainable. Instead the flow field is determined 
by insisting that the expansive singularity (Brown, Stewartson & Williams 1974; 
Bowles 1990; Bohr et al. 1992; Daniels 1992; Higuera 1994), occurs at the plate edge. 
The present work differs from Gajjar & Smith (1983) in that it is concerned with fully 
developed flow, and from BS, in that we study the form of the free interaction on a 
variety of slopes, corresponding to different Froude numbers. In addition we study 
forced interactions. 

We denote the slope by tana* and define a Reynolds number, Re based on the 
volume flux per unit width of the layer. The investigation is primarily concerned with 
slopes of O(Re-l), discussed in $4. On these slopes the prescribed pressure gradient due 
to the slope is comparable with the self-induced pressure gradient caused by a 
thickening or thinning of the layer due to viscous influences. These act across the 
layer’s depth on a long O(Re) lengthscale. For slopes much less than this, studied in 
detail in $5, the development is still slower, inertia is unimportant and the flow is 
described by lubrication theory. 

The lubrication approximation has been used by many authors to derive equations 
governing the behaviour of liquid films. One of the first was Moffatt (1977). Huppert 
(1982a, b)  uses it to study the spreading of a fixed volume of fluid on a surface. See also 
Lister (1992). Wilson & Jones (1983) study the fall of a thin liquid film down a vertical 
wall into a pool. In this case, since the wall is vertical, the gravitational contributions 
to the pressure are unimportant and surface tension dominates. See also Christodoulou 
& Scriven (1989), Higgins & Scriven (1979) and Tuck & Schwartz (1990). All these 
authors concentrate on the case where the self-induced gravitational pressure gradient 
is negligible or the mass of fluid is fixed. Here in contrast we are interested in the effects 
of the self-induced pressure gradient and flows which asymptote to some constant 
depth at infinity. There is a strong connection with the work of Chester (1966), who 
uses lubrication theory to give a description of a viscosity-dominated bore, or moving 
hydraulic jump, travelling downstream. Lubrication theory is used in the present 
context by Pritchard, Scott & Tavener (1992, which we shall refer to as PST) who, in 
independent work, derive the ordinary differential equation for the layer depth and 
solve it numerically in a particular case. Here we examine the equation in some detail, 
interpreting its solutions in terms of free and forced viscous-inviscid interactions and 
using these to give predictions for the form of forced interactions on the larger slopes. 

For slopes large on the O(Re-’) scaling the streamwise development is fast so that 
viscous effects are concentrated near to the bed leading to a multistructured double- 
deck description of the flow. For slopes of this magnitude the Froude number, based 
on the depth far upstream, is large and the flow largely supercritical. Upstream 
propagation of waves is only possible in a viscous sublayer close to the wall, where 
owing to the no-slip boundary condition, the flow is locally subcritical. Viscous effects 
act on these waves reducing their amplitude rapidly so that, in the steady flows we 
study here, the upstream-influence lengthscale, i.e. the streamwise extent of the 
adjustment is small. On slopes of this magnitude the flow undergoes breakaway 
separation (i.e. the main body of the oncoming velocity profile detaches from the bed) 
and the layer increases in thickness over a relatively short scale. We interpret this type 
of interaction as a hydraulic jump. To describe the slower interactions on the shallower 
slopes where the Froude number is not so large we shall use the word ‘adjustment’. 

For slopes as large as O(ReP5”) the development is so rapid that the cross-stream 
pressure gradient caused by streamline curvature may no longer be neglected. In 
addition the self-induced pressure gradient dominates over the gradient due to the 
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slope. Slopes of this magnitude have been discussed by Gajjar (1987). We discuss them 
only briefly here, extending the P -  A law to include the prescribed pressure gradient 
due to the slope. Gajjar (1987) shows that eigensolutions exist and gives analytical and 
numerical solutions for flow over a convex corner which exhibit waves just downstream 
of the corner. We also study the stationary wave train which may occur downstream 
of a jump, again from the standpoint of interactive boundary-layer theory. An increase 
in the normalized wavelength of these waves with increasing slope is predicted. 

This work is primarily concerned with the following themes. First, in 92 we show the 
non-uniqueness of the half-Poiseuille flow of a planar liquid layer on a favourable slope 
through the streamwise growth of initially small eigensolutions. 

Secondly, in $93 and 4 we investigate the structure and nonlinear development of 
these eigensolutions for different slope magnitudes at large Re. We discuss the 
implication this has for the shape of hydraulic jumps as the dominant physics 
governing these eigensolutions alters. We find that, for all slopes, the flow far 
downstream has a horizontal free surface and we examine the flow beneath the surface. 
Specifically we ask two questions : (a) whether the flow adjusts so that the free-surface 
remains concave upwards or whether a region in which the free surface is convex 
upwards is to be expected; and (b) whether or not the flow separates from the bed. In 
answer to (a), we find that the latter behaviour is to be expected only on slopes that are 
neither too small nor too large, 1.814Re-' < a* < Re-'". The flow separates if the 
slope is sufficient large, a* > 4.712Re-l. 

Thirdly, we are interested in the position of the jump upstream of a large obstacle 
mounted on the slope. Since the ultimate downstream form of the free interactions has 
a horizontal free surface and we expect the free interaction to occur far upstream of a 
large obstacle we deduce that the jump will occur at an upstream distance proportional 
to the obstacle height. In 95 we show this analytically for solutions valid for slopes 
small on the O(Re-') scale, and numerically for slopes of O(Re-') in 96. In particular, 
for slopes large on this scale, we identify two scales for the motion - the shortened 
scales of the jump far upstream and the longer scales over which the flow negotiates 
the obstacle itself. 

Fourthly, also in 96, we make a comparison with the predictions of this work on 
jump shape and position with the numerical and experimental results of PST, with 
good agreement on many points. 

Finally, throughout the paper, we briefly discuss the effect surface tension has on the 
development of the eigensolution. In particular, in Appendix B, we examine the free 
interaction on small slopes in the limit of large Bond number and show that it takes 
the form of a wave train upstream of a final dip in the free surface followed by an 
approach of the free surface to the horizontal. 

2. The governing equations and the departure from half-Poiseuille flow 
2.1. The equations governing the first stages of the departure 

Consider a uniform slope of angle a* to the horizontal. Let x*, y* measure distance 
parallel and normal to the slope respectively, with y* = 0 coinciding with the surface. 
A film of viscous incompressible fluid runs down the slope in such a way that it remains 
two-dimensional. Far upstream the fluid has depth h*, and the volume flux of fluid per 
unit width is Q*. We choose to normalize length, fluid velocity, and pressure with h*, 
Q*/h* and pgh*, where p is the density of the fluid and g is the acceleration due to 
gravity which acts vertically downwards. We introduce the Reynolds number, 
Re = Q*/v ,  where v is the kinematic viscosity of the fluid, and the Froude number, 
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half-PPF 

Free surfacej = 1 + ?(;) 

FIGURE 1. The problem in non-dimensional terms illustrating the coordinates, 2, 9, the free 
surface 9 = 1 +f and the bed 9 = s(2), defined in 92.1. 
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Fr = Q*'/(gh*'). Normalized distances and velocities parallel and normal to the slope 
respectively are 2, j ,  and fi, f. The normalized pressure and depth are written as 
f - cos a*( 9 - 1) and 1 + 9. The pressure and fluid stresses are taken to be zero in the 
air above the liquid layer and the governing equations and boundary conditions reduce 
to 

A 1  lf7i 

u,+ v, = 0, s, Ud9= 1, 
1 1  

U = V = O  at j = O ,  

and, at the free surface, j = 1 +f(x) ,  
1 1  

(U,- V,)f,++(fi,+ f,)(1 -9 , )2  = 0, 

A 1 

u+, = v, 

(2.1 a)  

(2.1 b) 

(2.1 c, d )  

(2.1e,f) 

( 2 . 2 ~ )  

(2.2b) 

(2.2c) 

where B = T/@gh*2) is a Bond number and T the coefficient of surface tension at the 
fluid-air interface. 

Far upstream the flow is half-Poiseuille, f i ( j )  = Upp,(F) = 3(9-i2/2), f = 0 and 
the reduced pressure p is equal to zero. Viscous dissipation balances gravity parallel to 
the slope giving 

Re sin a* = 3Fr, (2.3) 

or, in dimensional terms, = 3Q*v/(gsina*). We define a stream function, &(a,?) 
such that fi = $, and f = -$,. Far upstream & = F(9)  = 3 ( ~ ? ~ / 2 - 9 ~ / 6 ) .  If an 
obstacle is mounted on the slope then (2.1 e )  and (2. I f )  are to be applied at j = s(2) 
and the lower limit of integration in (2.1 d )  is s(i) where s(i) represents the obstacle. 
See figure 1. 

We consider perturbations to this flow which are exponentially small far upstream, 
linearizing about the Poiseuille profile and seeking solutions of the form 

& = F(j)+aexp(Bi)Aj), 9 = aexp(42). (2.4a, b) 

Substitution into (2.1) yields the system 

(ga) [ F ' f  -fF"] = - f, Fr-l + a  Re-l(f"' +By), ( 2 . 5 ~ )  

-d2aF'f= -6,Fr-'-BaRe-'(f"+q2f), (2.5 b) 
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where the prime represents i3/i39. We write P = cosa* aexp(@)Z7(jj), and use (2.3), 
giving 

317 ) = Re-l(j-’” + i”f’), 
Re tan a* 

tan a*Re tz tan a*tj 
3 FY-- 3 (f” + i”, 17’= 

with boundary conditions 
fT0) =f’(O) = 0, 

( 2 . 6 ~ )  

(2.6b) 

(2.6 c, d )  

fll) = -i, f”(l)-4zfll) = 3, n(l) = 1-2~tana*f’(1)/3-B~2/~osa* (2.6e-g) 

from linearizing about the position of the free surface 9 = 1. It is worthwhile 
identifying the origins of the terms in (2.6). The left-hand side of ( 2 . 6 ~ )  represents 
streamwise inertial and pressure forces, balanced by viscous effects on the right. The 
pressure variation across the layer is shown by (2.6b) to be made up of the effects of 
streamline curvature (first term on the right-hand side) and viscous effects (second 
term). Surface tension enters through the boundary condition on 17. The system 
represents an eigenvalue problem for the growth rate 4 which must be positive. The 
amplitude of the perturbation, a, is arbitrary. We consider (2.6) in the limit of large 
Reynolds number for progressively steeper slopes. 

2.2. Slopes of O(Re-’) 
If the slope is O(Re-’) we write tan a* = Re-’ a, 4 = q Re-’, so that the lengthscale of 
the motions is 2 - O(Re) and the Froude number is a/3 and is O(1). These scalings 
preserve a balance between viscous, pressure and inertial effects across the layer. In this 
limit (2.6) reduces to 17 = 1 for all j j  (for order-one Bond number), and 

q(F’f’- fF”+ 3 / a )  = f ,  ( 2 . 7 ~ )  

f”(1) = 3, fT1) = -;, fT0) =f’(O) = 0. (2.7 t i e )  

Numerical solutions to this problem, obtained by the use of finite differences and 
checked for grid independence, are presented in figure 2 showing the single positive 
value of q as a function of a, together with asymptotic results derived below. There are 
many negative values of q for a given a. As a+O, q approaches zero, corresponding 
to a further lengthening of the scale for the disturbance but as a+ 00, q increases 
rapidly. 

For small a the predominant balance is one between viscosity and pressure. We find 
that q - 3a and f - 3(jj3/2-9’) = -9F’. The stream function can be written as 
$ = F- a exp (42)jjF‘ = F( j j (  1 - a exp (q i ) ) ) .  Thus the flow is still half-Poiseuille but 
thickens for a > 0 and thins for a < 0. The adjustment occurs on a sufficiently long 
lengthscale, 2 - O(Re a-’), that viscosity is able to maintain the half-Poiseuille profile. 

In the limit of large a, moving towards gradients larger than O(Re-l), the solution 
has a double-deck form. Examining ( 2 . 7 ~ )  for large q and a, we note that the inertial 
terms dominate for j j  of O(1) with the pressure term reduced by the size of a. The 
solution here is f = - F’. Thus there is a slip velocity at the wall of magnitude - 3. This 
is reduced to zero in a boundary layer of thickness 9 - O(S), say, where f and the 
unperturbed flow F‘ (which asymptotes 39 as j + O )  are also O(6). The viscous, 
pressure and inertial terms of ( 2 . 7 ~ )  in this layer are of sizes O(&’), O(qa-’) and O(q8) 
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FIGURE 2. The eigenvalue q satisfying (2 .7~~)  as a function of a, the scaled slope. The disks represent 
values obtained numerically with the results for small values of a illustrated in the inset. The dashed 
lines are the asymptotes q = 3a as a+O and q = 4.213~2 as a+ co. 

respectively so that a balance is achieved if q - O(a3), 8 = a-l. We write q = a3g, 
= a-%, fG = a-lu, where q, z and u are O(1) as a:+ 00, and the governing equations 

become 
3g(m+a) = -3g+uzz, u+az = 0, (2.8 a, b) 

u=a=O at z=O, a+-3 as z+00. (2.8~-e) 

We find q = 9(3 ]Ai'(0)])3, where Ai is the usual Airy function, giving 

q - 4 . 2 1 3 ~ ~ ~ .  (2.9) 

2.3. Slopes of O(Re-5/7) and greater 
The relative error in neglecting the transverse pressure gradient generated by the 
streamline curvature is O(a7 Re-'). This becomes O(1) if a: = O(Re2/7), or 
tan a* = E Re-5/7, say, with & = O(1). The Froude number for these flows is Re2/7 &/3 
from (2.3) and is large. From Gajjar (1987) we note the lengthscale for the development 
of the flow to be O(Re1'7) and that viscous effects are confined to a sublayer of thickness 
O(Re-2/7) at the bed, because of the relatively rapid development of the flow. We write 
q = 4" with 4" = O(1). In this case, where y = O(1), (2.6) becomes 

(2.10a, b)  

with boundary conditions ( 2 . 7 k d )  and Z7(1) = 0, neglecting surface tension. Again 
f = -F', giving a slip velocity of -3 at the wall. In addition 

(2.11 a) 
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Since the basic flow is of a half-Poiseuille type this, gives 

n(0) = 1 +g@. (2.1 1 b) 

The addition of the second term in (2.1 1 b) is the only new effect so in the viscous 
sublayer the governing equations are (2.8) with - 3q"( 1 + giiiq"') replacing - 3g 
on the right-hand side of (2 .8~) .  We find, as does Gajjar (1987), that 
ij(1 +2&ij2/5)3 = 9&'(3 IAi'(O)l)', which has a real positive root for all &. 

As ii increases, the effects of streamline curvature dominate over those of gravity and 
the growth rate levels off at  O(Re-ll7) with q" - 91/7(15 lAi'(0)l/2)3/7. This description 
remains valid for O(1) values of a*. We conclude that the departure of the flow from 
half-Poiseuille flow on anything other than shallow slopes is governed by an interaction 
between streamline curvature in the main part of the liquid layer and viscosity at work 
in a boundary layer close to the bed. 

3. The subsequent development of the pertubations and the shape of 
hydraulic jumps 

We postpone until the next section a description of the nonlinear development of the 
initially exponentially small perturbations on slopes of O(Re-'). Here we examine 
slopes larger than this on which the development occurs relatively rapidly and takes the 
form of a jump in the depth of the layer over some shortened lengthscale. 

We first consider slopes large on the O(Re-l) scale, whose initial development is 
governed by (2.8). This system is a linearized form of the interactive boundary-layer 
equations. We formulate a double-deck interactive structure governing the nonlinear 
development according to (2.1) and (2.2) on slopes of magnitude O(Re-' a)  for large 
a and Re (see BS for more details). The viscous sublayer in which (2.8) holds 
becomes nonlinear when the perturbation grows to be of size O(a-'). The development 
occurs over the O(Reap3) lengthscale identified above and we write i = Reap3X. 
Just as for the linear case inertia dominates for 9 of O(1) where the perturbation to 
the oncoming basic half-Poiseuille flow is relatively small. The solution here is 
fi = UpyF( 9 + a-'A(x)), p = -a2 Re-lAX UPPF( 9 + a-lA(x)), to first order in a-l 
where A is unknown. This perturbation of O(a-') in the velocity alters the position of 
the free surface and we write fj = a-le so that from (2.1 d )  and (2.2b)e = - A  and 
4 = aple = -a-lA = a-'P say (for O(1) Bond number) so that P = -A  at the free 
surface. From (2.1 b) Pc - - (aFr)  = O(a7 Re-') which we assume to be small so 
that P = -2 at 9 = 0. There is also a slip velocity at the wall of size a-lhA where 
Up,, - A9 as 9 + 0 with h = 3. The viscous/pressure/inertia balance in the sublayer, 
where we write 9 = a-l F, 0 = 

u u , + v u , = - P , + u , , ,  c7x+Vy=o ,  (3.1 a, b) 

U = V = O  at F = o ,  u+Y+A as Y + m ,  (3.1 c-e) 

- 

and p = a3 V,  is governed by 

A-tO as X - t - 0 0 ,  P=-A. (3.1Lg) 

We have made two further normalizations, factoring out firstly the value of h and 
secondly the 3 multiplying the pressure term which arises from the relation Fr-l = 3/01, 
by scaling [a, V, P, 2, F, x ]  with [3X1, 3-lh3, 3h-', 3X2,  3hP, 33h-5]. The prescribed 
pressure gradient adds a term 3'ap1hp3 to the right-hand side of (3.1a) which is 
neglected. Equations (3.1) are the nonlinear interactive boundary-layer equations with 
the P- A law P = - A .  They have been studied in depth by Gajjar & Smith (1983). Far 
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upstream on these scales, i.e. as X+ - 00, 2 decays exponentially. Downstream the 
asymptote -2 - is attained. What is of interest here is that the flow separates 
on a shortened O(ReaP3) lengthscale and that the near-parabolic shape of the free 
surface is close in form to a hydraulic jump. These equations are also relevant to fully 
developed flow on a horizontal surface at large Fr (BS). This connection is to be 
expected since, from (2.3), Fr cc a and for these large values of a the flow reacts so 
rapidly that the relatively shallow slope has little effect. However, we can include the 
effect of the sloping surface and the prescribed pressure gradient by altering the P -  A 
law (3.lg) to 

Now, far downstream -A- X0.4305 so that the two terms in this law become 
comparable if X - 0 (~2.~~~').  Further downstream it seems likely that the prescribed 
term in the law dominates and 2 attains the limiting form 2 -X32a-'h-3 w ith 
P - 0( 1). This, interpreted in terms of the original variables, 2 and i j ,  corresponds to 
a horizontal free surface with i j  = a*2 to first order. 

When a increases to 0(Re217), we must include the effects of the cross-stream 
pressure gradient. The equations governing the development in this case have been 
found by Gajjar (1987) and we refer the reader there for the details of their derivation 
(see also BS). This follows similar lines to that of (3.1) and the scales of the interaction 
can be obtained by replacing a by Re217di. Nonlinear effects are felt when the free 
surface is displaced by an O(Re-2/7) amount. The main part of the boundary layer is 
again relatively passive and the flow in the viscous sublayer is governed by (3.1) but 
with the P - A  law 

with d = (2/5) A'03-6. This includes the extra contribution to the pressure from the 
streamline curvature. Again we have neglected, for the moment, the relatively small 
effect of the driving pressure gradient due to the slope. 

Solutions of this set of equations for a free interaction are described in BS. These 
show the flow separating downstream with the asymptote -2 - X0.4305 being attained 
as on the smaller slopes discussed above. In addition, however, there is the possibility 
of oscillations in the free surface downstream caused by the interplay between the two 
inviscid terms on the right-hand side of (3.3). These are shown by BS to exist 
downstream of a small obstacle which causes linear perturbations to the basic shear 
profile. Gajjar (1987) also find them in linear and nonlinear flows over a convex corner. 
Large-amplitude disturbances with separation may be related to the wave hydraulic 
jump and the so-called surface shear wave described by Peregrine (1974), and de Silva 
& Peregrine (1988), although nonlinear free interactions with this pressure- 
displacement law in BS show no such oscillations. We emphasize that the full problem 
should take into account the downstream boundary conditions. 

For slopes larger than 0(ReP517) the cross-stream pressure term dominates and the 
P -  A law becomes P = -ddi7Jxx. This P -  A law has been studied by, for example, 
Smith (1976), Smith & Duck (1977) and Merkin & Smith (1982). The work of these 
authors indicates that there is a downstream form with separated flow and 
2 - -Po dP5X2/2 for Po > 0 and independent of di as X+ 00. This would correspond 
to separation of the liquid layer with the free surface remaining concave upwards, in 
contrast to the shape of the free surface on the smaller slopes discussed above. 
However, using an argument similar to that used by BS, the neglected gravitational 
term may be reinstated at large values of X, as 2 becomes large but remains finite 
so that a jump with a blunt free surface may be seen. Which of these occurs depends 

p =  -A-X32a-lh-3, a $. 1. ( 3 4  

- - - 
p = -dc7A xx - - - A ,  (3.3) 
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upon the influence of the prescribed pressure gradient due to the slope. Including these 
modifies the P- A law to 

(3.4) 
If we consider (3.4), as d and X becomes large, together with the result that 
downstream A= O ( K 5 X 2 ) ,  we see that the second term will only enter and give the 
blunt shape of the free surface if the distance required for it to become important, 
X - O(d7I2), is sufficiently short. The last term, which causes the free surface to become 
horizontal, will enter and stop this occurring, when X - O(d3 Re2I7). So, for there to 
exist a region in which the free surface is convex upwards, we require d7/2 4 k3 Re217, 
i.e. 2 4 Re417 or a* 4 Re-117. !f this is not the case, as is true for slopes of O(1) as 
Re+ 00, the flow will not be affected at all by the gravitational term, -2, in the 
pressure law. As a result the flow will proceed to attain a horizontal free surface with 
the free surface remaining concave throughout the interaction. 

The other possibility we consider here is that of a train of waves after the jump. For 
small values of d the predominant balance is between the two terms on the right of (3.3) 
and the wavelength of the waves is X- k7/', i.e. 2 - O(Re117d1/2) or O ( F Y ~ / ~ ) .  These 
shortened scales ensure the dominance of this inviscid balance. These are nothing other 
than long inviscid gravity waves on an ambient shear flow and able to stand on the 
stream, despite the large Froude number, since the flow is subcritical close to the bed. 
They suffer attenuation over the longer scale f - O(Re1i7d1/3) due to interaction with 
the wall layer. As d increases the wavelength increases to O(Re1I7) and the waves 
become affected by a viscous-inviscid interaction at first order. Further downstream 
we would expect the prescribed term in the P - A  law to cause the free surface to 
become horizontal. 

What form of the jump actually occurs is likely to depend crucially on the 
downstream boundary conditions and the flow within the separated region. A study of 
these effects is required to confirm the above prediction a* - Re-1/7 for the change in 
the shape of the jump since, for a slope of only O(ReF3I7), the crossover between the 
dominance of the effects of streamline curvature and those of gravity occurs after the 
free surface has moved an O( 1) distance and the separation becomes massive, in the 
sense that the displacement of the free surface can no longer be considered small as is 
required for (3.1) to hold. However, this study will not be carried out here. 

Surface-tension effects, as can be seen from (2.2b), will result in the addition of a 
term +Azz to the pressure-displacement law as noted by Gajjar (1987). If the 
coefficient of surface tension is large enough the initial departure will be wave-like. See 
Appendix B and BS who describe many of the novel properties of the interaction if 
surface tension dominates over streamline curvature. It is interesting to note also that 
the effects of surface tension can reduce the magnitude of the coefficient of the 
curvature term in (3.4) and allow the second, gravitational, term to enter before the 
growth of the last, prescribed, term destroys the interaction. Thus a large surface- 
tension coefficient ( B  - O(Re2/7)) will mean that such free interactions will be more 
likely to be seen as the slope increases. 

p = -&7A-- -A+ Re-2/732h-3&-1X. xx 

4. The downstream form of the free interactions on slopes of O(Re-') 
4.1. The governing equations 

On slopes of O(Re-l) viscosity acts across the whole of the layer over the lengthscales 
upon which the self-induced pressure gradient is comparable with the prescribed 
pressure gradient due to the slope. Its effects are not confined to a sublayer at the bed 
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and the multistructured descriptions of $3 are not valid. The governing equations, 
derived by considering (2.1) and (2.2) in the limit Re+ 00 with the scalings 
sina* = Re-la, i = R e x ,  = U, P = Re-’( V + s ’ ( x )  U ) ,  and writing the reduced 
pressure P = ax+ Frp, $j = ?+ax and j = y+s(x) ,  are 

uux+ vuy = -px+ uyu, p y  = 0, ux+ v, = 0, (4.1 a-c) 

U = V = O  at y = O ,  (4.1 d, e )  

U, = 0 at y = h(x)  = 1 + q + u x - s ( x ) ,  p = Fr-’?, (4. If, g )  

with ?--ux as x + k c o .  (4.1 h)  

The depth of the liquid layer is h and y measures distance normal to the bed. The 
conservation of mass flux implies 

(4.1 i)  

We can define a stream function $(x, y )  where $, = U. We also have the relation 
Fr-lu = 3 from (2.3). The slopes which make up the obstacle s(x) must be O(Re-’). 

4.2. The numerical solution and the asymptote for the ‘smaller’ gradients 
In (4.1) we first set s identically equal to zero and omit the downstream boundary 
condition to study the free interaction. We seek solutions which illustrate the 
subsequent nonlinear development of the eigensolutions described in $ 2. We seed these 
eigensolutions by setting the initial depth to 1 + S with 6 small, then march the solution 
forward in x. The numerical method, and in particular the technique used to deal with 
the unknown position of the free surface, is described in Appendix A. The solutions 
for a range of values of u and various initial perturbations are presented in figures 3 
and 4. 

One possible type of solution terminates in a so-called expansive singularity with the 
derivative of the layer’s depth becoming large and negative and the skin friction 
becoming large and positive, although the depth of the layer remains of O(1). The 
scales of the interaction shorten as this singularity is approached and we expect the 
prescribed pressure gradient due to the slope to become unimportant. There are two 
alternative forms of this singularity. The first (Bowles 1990) is akin to the structure of 
the expansive singularity in the closely related, problem of the free interaction in 
hypersonic flow (which is governed by (3.1) see Brown et al. 1974). This has 

px - - P,(x, - - In ( x ,  - x ) ) ~ / ~ L , ( x ,  - x) 

U,(O) - <(x, - x)-’l5( - In (x, - x))’’~L,(x,  - x )  and 

where P, and are unknown positive constants, the singularity occurs at x = x,, and 
L,  and L, are functions that vary more slowly than any power of a logarithm. The 
second structure (Higuera 1994) insists that the flow is critical, in the sense that waves 
on the velocity profile at the singularity cannot travel upstream, and gives the 
prediction p z  - (x, - X ) - ’ . ~ ’ .  See also Daniels (1992). A careful analysis, not presented 
here, of these computations shows that this second singularity is attained. 

Another possible solution, illustrated in figure 3, has the free surface becoming 
horizontal. We note four points. First, for the case u = 0.25, the approach to this 
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FIGURE 3 .  Numerical solutions of the free-interaction problem governed by (4.1) showing expansive 
interactions and the different forms of the compressive interactions on different slopes, a. In (a-c) the 
vertical axis is y-ax, so that the lower, straight, line represents the bed. The other curves are the free 
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horizontal asymptote is from above, whilst for a = 2.5 it is from below so that there 
is a region in which the free surface is convex upwards. Secondly, the flow exhibits self- 
induced separation for the larger slopes on these scalings, but not for the smaller 
slopes. Thirdly, the development lengthscale decreases as a increases in agreement with 
the predictions of $2. Fourthly, for the case a = 6 the development is rapid and the 
blunt, near-parabolic, shape of the free surface supports the proposition in $2.2 that 
the limiting structure describing the development of the flow for large values of a is 
exactly that described in BS. 

We now search for a description of the downstream form of these solutions. At the 
horizontal free surface far downstream we have the constraint U, = 0. We therefore 
expect the flow far downstream to be Jeffrey-Hamel outflow through a diverging 
channel of angle 2a*, if we restrict our attention to solutions which are symmetric 
about the midpoint of the channel (Jeffrey 1915; Hamel 1916; Rosenhead 1940; 
Fraenkel 1962). This relation between Jeffrey-Hamel flows and liquid-layer flows has 
been utilized by Eagles (1988) and PST, together with the assumption that the flow 
varies slowly and so maintains its Jeffrey-Hamel form, to study the development of 
liquid-layer flows over slowly varying obstacles and gradual changes in slope. In this 
work we are also concerned with more rapidly varying flows. Here we need consider 
only the high Reynolds number limit of Jeffrey-Hamel flows, with the angle between 
the plates O(Re-') as Re + co. 

At large values of x we have the scalings y - x, U - l / x  from flux conservation, so 
that p - U 2  - 1/x2. We write the position of the free surface as 

y = 1 +ax+Fr(p ,+p , /x2+ ...), x+ co (4.2 a)  

and introduce the new variable 

( = y / (  1 + p o  Fr + ax). (4 .26)  

The value of po will not be found in this large-x analysis. It is related to the total drop 
or rise in the free surface during the interaction and contains information about the 
history of the flow. Substitution into (4.1) yields, at O ( X - ~ ) ,  as x+ 00, 

( 4 . 3 ~ )  

$h( 1) = 1 ,  yY( 1) = 0, +(O) = +'(O) = 0, (4.3 t i e )  

for the stream function + where U = +'/x to first order and p 1  is to be found. Here the 
prime indicates a/a(. We make the substitutions S = a+', A = 2a4p, and find 

S " + S 2 + A  = 0, ( 4 . 4 ~ )  

+ a+/2 + 2p, a3 = 0, 

S'(1) = S(0) = 0, Sd[ = a. s: ( 4 . 4 t i d )  

surface y = 1 + 7 for different values of 8, the initial perturbation to the layer depth. Ax is the step 
length used in x and m is the number of points used in 
m = 201, 6 = - 5  x -2.5 x 1.25 x lo-*, 2.5 x 5 x for the curves (iwv) 
respectively. The approach to the downstream asymptote is from above. Separation does not occur. 
(b)  a = 2.5, Ax = 
- curves (i), (ii), (iv), (v) respectively. The approach is now from below. (c) a = 6, 
Ax = lo-', m = 801, S = - for curves (it(iii) respectively. The interaction develops 
rapidly and there is an obvious jump in the free-surface position. The inset shows the initial stages 
of the solutions more clearly. Separation occurs. ( d )  The development of the skin friction, 7 = U, at 
the bed, for the compressive solution shown in curve (iii) in (c)  above. 

(see Appendix A). (a) a = 0.25, Ax = 

m = 801 for S = curve (iii), but Ax = m = 201, for S = - 
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This system can be solved in terms of elliptic functions. We summarize the results and 
draw attention to points of interest. For more details see Fraenkel (1962) or Eagles 
(1988). 

For a < 2.998 approximately there is a family of solution in which the skin friction 
at the bed is positive and U ' ( y )  is monotonically increasing. If A is positive the 
approach to the horizontal asymptote for the free surface is from above, if negative, 
it is from below. Of particular interest is the limit a+O. From (4 .44  we expect S to 
be small in this limit so the nonlinear term in (4.44 is lost and the predominant balance 
is between pressure and viscosity as in lubrication theory. Therefore the downstream 
form is one of half-Poiseuille flow, of linearly increasing depth. As A is O( l), p 1  is large 
and the approach to this asymptote as x increases is slow. 

A second slope of interest, covered by this type of solution, is that for which A 
changes sign. We consider (4.4) directly, putting A = 0. The solution has 

K 
dt = 31/2 1.814. 

If a is bigger than this then the free interaction involves some range of x for which the 
free surface is convex upward. 

For the range 2.998 < a < 4.712 approximately, U again increases monotonically 
from zero but there is a zero in U". For 4.712 < a < 5.461 the velocity profiles exhibit 
regions of backflow close to the wall corresponding to separated flows. The case 
a = 4.712 corresponds to a downstream asymptote with zero skin friction. For 
a > a, = 5.461, there is no suitable Jeffrey-Hamel solution for net outflow, symmetric 
about the midpoint of a diverging channel. An alternative structure, involving a jet at 
the free surface, valid for all a but especially relevant to a > ac, is described below. 

The normalized velocity profiles in figure 4, calculated from (4. l), follow the pattern 
described above as a increases. The figure shows axU far downstream, corresponding 
to S(5). The curve for a = 0.25 is very like a half-Poiseuille profile, whilst that for 
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a = 4.712 exhibits zero skin friction, UJO), as we predict. Theoretical values of the 
normalized free-surface velocity, S( 1) are 1.5, 1.625 and 2.18 for a equal to 0, 1.8 14 and 
4.712 respectively and these predictions agree well with the calculations shown in the 
figure. In contrast, similar curves for larger values of a (not shown) exhibit separated 
flow but the product axU does not asymptote to a constant profile as x increases. We 
conclude that an alternative asymptotic structure is relevant for these slopes and we 
believe this structure to be that described below. 

4.3. An alternative f low structure for  large x;  breakaway separation 
An alternative form for the downstream asymptote has the vorticity breaking away 
from the wall to form a jet at the free surface, instead of being distributed across the 
depth of the layer by viscous action as in Jeffrey-Hamel flow. Beneath this jet, which 
contains the majority of the downstream mass flux and momentum flux of the flow, is 
an irrotational region of backflow and a reversed-flow boundary layer at the wall. This 
'breakaway separation' can be expected to occur for the larger values of a since for 
these slopes the development is too rapid for viscosity to redistribute vorticity across 
the layer. This flow may also be considered as the ultimate form of the downstream 
development of the separated flows beneath a free surface described in 93, as the 
influence of viscosity is felt across the depth of the layer on an O(Re) lengthscale. 

Consider (4.1) in the limit of large x with flow beneath a horizontal free surface. The 
thickness of the layer is given by ax+pFr,  where p is the pressure. Without loss of 
generality we can ignore the O(1) contribution to the pressure and so free-surface 
position, effectively fixing the origin of the x-coordinate. The flow divides into three 
regions. See figure 5. Region I, near to the free surface, is of thickness O(x2l3) and here 
we use the variable x = (ax +p Fr -y)/x2/'", so x = 0 at the free surface and approaches 
infinity towards the interior. The stream function, @, is O(x1l3), and the velocity profile 
here turns out to be that of a sech2 X-like jet, with the velocities O(X-'/~) so that the jet 
slows as it spreads. In the main part of the flow, region 11, which is of thickness O(x), 
there is a slow backflow with @ - O(x1l3) and U - O(X-~'~). The flow here is inviscid 
and irrotational. Viscosity reduces the slip velocity to zero in region 111, a reversed-flow 
boundary layer at the lower wall of thickness A say. To ensure that viscous and inertial 
terms (of sizes U2/x - O ( X - ~ / ~ )  and U / A 2  - xP2I3/A2 respectively) balance, requires 
A - O(x516) so that @ - O ( X ~ / ~ ) .  We combine regions I1 and I11 in the analysis below 
and use the variable 5 = y/x516 to describe it. This is possible because region I1 is 
described by the large-c (inviscid) limit of the equations of region 111. The variables 5 
and x are related by 

With this structure, 

In region 111, 

and 

5 = ax1/6 - y 1 / 6  x i -  Frpx-'/'. 

@ - - ( ~ ' / ~ f ~ ( x >  + xli6f2(x) +f3(x)  + . . .). 

(4.5) 

(4.6) 

$ x 1 / 6 g l ( ~ + g 2 ( ~ + x - l / 6 g 3 ( ~ +  ... ) (4 .7~)  

(4.7 b) 

then, we expand as follows. In region I, 

P - -(PI x-4/3 +p2 x-3/2 + p 3  x-513 + . . .). 
The relevant boundary conditions are f :(O) = A(0) = 0, as the change in position of the 
free surface has yet to have an effect, with the exception that f3(0) = - 1 for the net 
mass flux to be unity. The value off;(co) should be zero to match with the slow 
reversed flow in region 11. The other f i ( c o )  should be match with the higher-order 
solutions in region 11. Here, g,(O) = g;(O) = 0 and g;(co) < 0 to give reversed flow in the 
main body of the layer. 
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Y = o  
x 9 1 

FIGURE 5. The structure of the flow at large distances after breakaway separation showing the 
coordinate system used and the regions 1-111 referred to in 94.3. 

Substituting the above asymptotes into (4.1) and using the result, derived below, that 

(4.8 a) 

f ; + ’ f f ” + 2 y f ’ + L f ” f  3 1 2  6 1 2  6 1 2 -  - 0, (4.8b) 

( 4 . 8 ~ )  

f 2  turns out to be zero in the equation forf, gives the following: 

f L” +gJJ-; +fP> = 0, 

fs‘ + + fl f 5 + f ; f ;  = 0, 

where the prime indicates a/ax. Also, 

gl” + $gl g; + :(g;” - 2pJ = 0, (4.9a) 

g; + kl g; + g;, -P2> = 0, (4.9b) 

(4.9 c) 

where the prime indicates a/c?<. We note that in the main part of the flow, region 11, 
where the vorticity is zero, these equations give p1 to p3 in terms of the backflow 
velocities g;(.o). 

g; + ;gl g; - 2; g ,  + g(g; g; -p3 + ;gi2) = 0, 

In region I , f ,  is found to be 

f l ( X >  = a tanh (ax/6), (4.10) 

where a is an arbitrary constant. This gives a jet with a velocity K sech2 ( a ~ / 6 )  near the 
free surface. The value of a is undetermined. The momentum flux contained within the 
jet is a3/9, and is O( 1) as x + 00. The pressure is asymptotically zero as the free surface 
is horizontal and the shear stresses at the free surface and at the wall are zero and 
O(xP3l2) respectively. An application of the momentum integral theorem, therefore, 
suggests that this momentum flux is the same as that emerging from the interaction at 
x - O( l), and so is equal to that of the original profile except for some possible losses 
in the process of separation. These losses are due to either viscous stresses at the wall 
or work done by the initial flow in countering any rise in depth and so adverse pressure 
gradient, near to the start of the interaction. 

Sincef, = f ; is a complementary function to all the equations forf,, i b 2, we may 
write the full complementary function forf,, i 3 2, in the form 

fi = Ci sech2 z -$ sech2 z (4.11) 
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where here z = 4 6  and q ( u )  = Ai F(r, s; 1 ; u) + Bi F(r, s; i; 1 - u) = Ai q51 + Bi $, 
say. Here F is the hypergeometric function (Abramowitz & Stegun 1965), with 
r + s = 1 /2 and rs = (1 - i)/4. Using the asymptotic forms of q51 and q5, we are led to 
the following relationships between the unknown constants : 

(4.12kd) 

where KO = 2@( 1) - @(r) - @(s), with @ here representing the di-gamma function, r‘/r. 
Hence, using the boundary conditions, we find C, = A, = 0, C, = - 1, and A, = -2. 

The equations in region 11, for the reversed flow, must be solved numerically. 
The transformations 

(4.13 a-c) 

gi = ~iiii(6, 
lead to the normalized equations 

gp’+g,&’+4(gi2- 1) = 0, g ~ + $ ~ g 1 + 9 ( 2 ~ & , -  1) = 0, (4 .14~ ,  b) 

gE’+g,”gl-g,g;+lo(g;ggj-l+p(g;~-l)) = 0, (4.144 

with boundary conditions &(O) = &(O) = 0, gi - -[+ti at infinity to ensure 
irrotational flow in region 11. The Ci are constants to be found numerically. We solve 
(4.14) using finite-difference methods and check the results using a variety of grid sizes 
and ranges of integration. We find g;(O) = -2.273, tl = 0.414, gi(0) = -3.715, 
6, = -0.140. The constant C, depends on p, which turns out to be independent of a but 
not of a, and therefore no unique value can be given to it. The decay toward the 
reversed-flow solutions at infinity is like k7, i.e. algebraic. 

We may match the solutions in regions I and 11, to find the unknown coefficients and 
the pressure. Writing ci = f i t i  and using (4.5) to write the solution in region I1 as 
5- co in terms of x, we find 

(4.15) 

So, matching, we find, from the O(xl/,) term, p1 = (a/a)’/2 sincefl(co) = a. At 0(x1l6) 
there are no terms proportional to x in (4.15) and therefore B, = 0 from (4.12~).  Since 
then A, and C, are also zero, from (4.12b) and (4.12c), we find f, = 0 and 
p ,  = ~,(2p,) l /~/a  = 1 . 0 1 4 ~ ~ / ~ a - ~ / ~ .  At 0(1) we get, using (4 .12~)  with r = 1, s = - 1/2, 
B, = - 12/a, u = -a(l  +9.348/a)/a2 and 

(4.16) 

using a relationship between hypergeometric functions and Legendre polynomials. 
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In principle higher-order terms in this expansion can be found. There is new physics 
entering at O(X-"~) ,  due to the change in the position of the free surface, and at O(x-') 
due to the algebraic decay of the solutions in region 111. Uncertainties over the O(1) 
position of the free surface, i.e. the pressure rise in separation, and the origin of the 
expansion in x, would bring in eigensolutions to the problem but these have been 
suppressed as mentioned above. None of these extra effects, however, serve to fix the 
value of a which depends on the momentum flux emerging from the region x = O(1). 
In summary, therefore, given both a and a, 

y 1 1 6  

UJO) - 1 + 1.657-+ ... 
a 

(4.17b) 

The momentum flux of the oncoming flow, except for any losses at separation, is 
concentrated into a free jet near to the free surface. The speed of this jet is O(X- ' /~ ) ,  
which is faster than the O(xpl) velocities in the Jeffrey-Hamel flow of $4.2. The large 
volume flux in the jet is balanced by a slower backflow in the wider main part of the 
thickening layer which is brought to zero by a boundary layer at the wall. The pressure 
gradient is simply that required to drive the backflow which, at higher orders, is also 
affected by the boundary layer's displacement. It seems possible to accommodate any 
momentum flux and therefore any oncoming-flow/separation pair with a structure of 
this kind. It is worth noting that this structure, at least to these lower orders, before 
the position of the free surface enters into the expansion, can describe the asymptotic 
form of breakaway separation in a diverging channel. The differences appearing at 
higher orders will not result in the general form of the expansion becoming unsuitable. 

5. The limit of small gradient 
5.1. The governing equation 

We have seen in 9s2.2 and 4.2 that, if the scaled slope, a, is small, the flow remains of 
half-Poiseuille type throughout the compressive free interaction. Both the initial stages 
and the final large-.f asymptote, with a horizontal free surface, are governed by 
lubrication theory. The development in .f is slow and viscosity acts to redistribute the 
vorticity and keep the flow half-Poiseuille in character. This means that separation is 
not possible. 

The lubrication approximation has been used by many authors to derive equations 
governing the behaviour of liquid films, specifically in this context by PST. We write 
the depth of the layer as h ( X )  where X = 2ss in~  and in the limit sin a+O, assuming 
Re sin ti < 1, the Navier-Stokes equations reduce to the ordinary differential equation 

1 
Ax-yhxxx  = 1----s,+ys,,,, h3 

where y = Bsin201 and s ( X )  describes any obstacle on the slope. The basic slope has 
been scaled to be unity. We refer the reader to PST for the details of the derivation. 
The equation remains a valid description of the flow as long as h3 9 sina*. 

Here we investigate the solutions of (5.1) with y = 0, in both forced and free 
interactions, using both analytical and numerical solutions. The free interaction in the 
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limit of large y is considered in Appendix B. We aim, by a study of this reduced 
equation, to shed light on the structure of the forced interaction on larger slopes. 

5.2. Free and forced interactions on shallow slopes 
In this section we concentrate on the case y = 0, so that 

(5.2a, b)  

This equation contains within it the possibility of free interaction. If we consider the 
case s = 0 and neglect the boundary condition as X+ co we see that a possible solution 
is h = 1. This is not unique and we have seen in 92.2 that an initially small disturbance 
of the form h = 1 + cg(X), c 4 1 ,  will grow according to g, = 3g which implies 
g = kexp(3X) with k arbitrary. Further downstream we have the three possible 
asymptotes h - X ,  h N 1 or h - (4(X0-X))"4 for some finite X,,. The first of these 
(k  > 0) corresponds to the compressive free interaction studied in $4.2. The second is 
undisturbed flow (k  = 0) and the last (k < 0) will lead to the expansive interaction. As 
the layer thins inertial effects will become important. In the case of a large Reynolds 
number, the final form of this interaction will be governed by the full boundary-layer 
equations with the singularity described in $4.2 being attained. 

We now turn to the forced interaction. The numerical solution of the forced 
interaction by marching forward from X = - 00 is unstable and the solution attains 
either the first or the third of the three forms described above and not the downstream 
boundary condition. The numerical solution can be rendered stable by integrating 
from + 00 imposing the boundary condition relevant there. (The author is grateful to 
Dr S. J. Tavener for drawing his attention to this fact.) All the numerical solutions 
presented in this section are obtained using this technique. We first consider a case 
which can be solved analytically and which exhibits many of the features common to 
forced interactions (see Smith 1982). The case considered is that of a simple change in 
slope at X = 0, 

sx = 0, X < O ,  s, = p ,  X 2  0. (5.3a, b )  

A numerical solution of this problem, with /3 = 4/5  is presented in figure 6. In the limit 
/3+ 1 - the slope downstream of X = 0 becomes nearly horizontal and the depth of the 
layer becomes large. As p- - co, in contrast, the gradient increases and inertial effects 
must enter as the layer thins. For X >  0 (5.2a) reduces to 

(5.4) 

The appropriate downstream boundary condition is h, + 0 as X +  00, corresponding 
to uniform flow downstream. It is clear from the arguments presented above for the 
free interaction that the only possible solution has h, = 0 for all positive X ,  i.e. 
h = ( I  -/3)-1/3 for X > 0. This implies that h(0) = (1 --p)-l13 and so for X < 0 we have 

(5.5a, b) 

1 
h3 

h x =  1---sx, h + l ,  X++CO. 

h, = (1 - /3-  l /h3 .  

h, = 1 - l / h3 ,  h(0) = (1 -/3-'13. 

If we write ( 1  -p)-113 = 8, then this equation has a solution given implicitly by 

X= (h-S)+iln ~ h-1 S2+S+1 ' I 2  1 tan- (2/2/3) (h-6) ).  
(5.6) 16 - l (h2+h+l )  /vi ' ( l+t (h+i) (S+i)  

If we examine this as S+ co (p-. 1 -), corresponding to the downstream slope 
nearing the horizontal and so the depth there becoming infinite, we find, writing h = Sh 
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FIGURE 6. A numerical solution of (5.2) with s given by (5.3) with p =  415 corresponding to liquid- 
layer flow on a shallow slope encountering a decrease in the gradient. (a) The variation with X 
of the bed (the lower curve, Y = - X + s ( X ) )  and the free-surface position (the upper curve, 
Y = --X+ s ( X )  + h). (b) The depth h(X) .  

and 2 = SX, where h and 2 remain O(1) as 6;- co, that h - 1 + 2. This implies that 
upstream of X = 0 the free surface is horizontal and the depth alters owing to the 
slope. In this vicinity of 2 = - 1, i.e. X = - 6, the depth becomes O( 1) and the solution 
here is 

This is the solution of ( 5 . 2 ~ )  for a compressive free interaction, i.e. s = 0 and 
h = 1 +kexp 3X far upstream with k positive. As X+S+ - co the solution is 

h = 1 + 4 3  exp (3(X+ a)), (5.8) 

corresponding to the form of the solution predicted for the free interaction and giving 
k explicitly. For finite 6 the solution is more complicated, but as X+ - co it always has 
the form h = 1 +kexp(3X), where 

k = (6- 1) 3(6-l)+43tanP1 

If now 6 B 1 this reduces to k - 4 3  exp(36), and this agrees with the result (5.8), 
corresponding to the position of the free interaction moving a distance O(6) upstream. 
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On the other hand, if we consider the case of a large increase in slope so that 6- 0 + , 
then 

(5.10) 

and. this indicates that the adjustment towards a large increase in slope starts at  a 
position O(-ln(6)) upstream. Of course the limit 6+0 is not strictly valid as inertial 
effects will enter near X = 0 as the depth decreases. It seems likely, however, that the 
initial stages of the interaction will be governed by lubrication theory and this result 
will hold upstream of X = 0 as S+ 0. 

This simple example has a complete analytical solution and illustrates features 
common to many forced interaction problems, in particular the movement of the start 
of the interaction upstream as the size of the departure from uniform flow increases. 
Also clear is the development, in the limit 6 + 00, of a flow containing a free interaction 
far upstream of X = 0. 

5.3. The asymptotic structure offlow over a large obstacle on a shallow slope 
Numerical solutions of (5.2) for a range of obstacles are illustrated in figure 7. The 
height of the free surface above some horizontal datum does not increase as the flow 
thickens, which may be proved by considering (5.2). The solution for flow over a single 
obstacle has an asymptotic structure as the height of the obstacle, d say, increases but 
with the width remaining O(l), which we now describe. We write the governing 
equation as 

1 
h3 

h,  = 1 ---ds,, ( 5 . 1 1 ~ )  

s = O ( 1 )  as d- tco ,  h + l  as X - t k c o ,  (5.11 b, c )  

s - 1-soX2/2 as X+O, (5.11d) 

where, in addition, s ( X )  decays exponentially for large 1x1. Here so is the second 
derivative of the obstacle shape at the crest which is typically of the type used in the 
numerical solutions in figure 7. We presume too, that it is symmetric about X = 0 but 
this can easily be relaxed. We look for a solution of the type suggested by the numerical 
solutions and consider the equation in the following four regions. See figure 8. 

First, on the lee side and on the slope downstream of the obstacle (region I), the 
primary balance is local in character and h,  is relatively small. The solution is 
h - (1 - dsx)-lI3, as d+ co. Thus as X+ co and s decays exponentially to zero, h + 1. 
The depth is determined solely by the local slope, so for this asymptotic structure to 
be valid, sin a* < &l. As X - t  0 + , i.e. approaching the crest of the obstacle, we find, 
for large d, that 

h - (ds,)-1/3X-l/3 -I(dso)-4/3X-4/S (1 + O(X)), (5.12) 

since s is locally symmetric. 
Secondly, near the crest of the obstacle (i.e. near X = 0, region 11) the slope nears 

zero and so a locally defined depth would be infinite. To counter this the non-local term 
h,  enters and a balance including this effect is possible if h - O ( ~ t l / ~ )  and X - O(&4/7). 
Therefore we write h = X = & f 4 1 7 ,  with h and 6 both O(1) as d+ co, and find 

t$ = 
1 1 

h3 
-7 + 6.3, +d3'7 + O(&4/7) (5.13)  
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FIGURE 7 ( a ,  b). For caption see facing page. 

as d-t 00. We now write 
boundary conditions from (5.12), 

= i,+&317h1, and substitute into (5.13) to get, with 

(5.14a, b) 

(5.14c,d) 

Equation (5.14a) can be solved numerically. This has not been done since it seems clear 
that a solution can be found by starting the integration at downstream infinity. The 
asymptotes as [+ - 00 are 

(5.1 5 a) 

and h1 - [+El+.. .  . (5.15b) 

The value of E, is fixed by (5.14a) and is of the form E, = i?s;1/7 for a number e" which 
is independent of the obstacle. El is also fixed and can be calculated from the relation 
(5.144. 

Thirdly, upstream of the obstacle (region 111), from (5.15) we see that, as 
X +  0 -, h - dX2/2 + X+ + &4/7E1 + . . . and so we write, for X < 0, 



Liquid-layer flows on favourable slopes 

( C )  

85 

15 

10 

Y 5  

0 

-5 

-15 -10 -5 0 5 

I 

-15 -10 -5 0 5 
X 

FIG~JRE 7. Numerical solutions of (5 .2)  with s given by dexp ( - (X/b)2) .  (a, c). The variation with X 
of the bed (the lower curve, Y = - X + s ( X ) )  and the free-surface position (the upper curve, 
Y = -X+s(X)+h) .  (b, d )  The depth h(X) .  (a, b) d =  1, b = 1/4, (c,  d )  d =  11, b = 2.  

h = dH, + Hl + &'/'HZ + &'/'H3 + . . . . Substitution of a solution of this form into 
(5.11) gives, on matching with (5.15), H, = 1 -s, Hl = X, H ,  = El, H3 = El, and as 
X+- co we find that 

h - d+X+&1~7E0+&4'7E1+.... (5.16) 

Lastly, we consider the region in the vicinity of X = - d (region IV). Here h becomes 
O( 1) once more and we expect a free interaction to occur. To leading order the position 
of this interaction is X= -d ,  as found earlier in this section for the case of an 
adjustment of the flow to that on a nearly horizontal slope. However, in this case we 
have shown that the next term in the position of the interaction is 
and so depends on the curvature of the obstacle at its crest, with a sharper 
crest having a smaller effect on the upstream behaviour of the solution. If 
X = - d-E,  &'I7 - El cT4/' + 6 then in the vicinity of 6 = O(1), as d+ 00, the flow is 
governed by the equation of the free interaction and this ensures that h --f 1 as X - t  - co. 

6. Forced interactions on larger slopes and comparison with experiments 
6.1, Forced interactions on slopes of O(Re-l) 

We present in figure 9 some solutions of (4.1) corresponding to a liquid adjusting to 
a change in slope or negotiating an obstacle placed on the slope. These are obtained 
using the numerical scheme described in Appendix C. Figure 9(a)  shows the free 
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IV I11 I1 I 

FIGURE 8. The asymptotic structure of the solution for the depth h of viscous liquid layer flow over 
a ridge of height d 9 1 and of O(1) width mounted on a shallow slope. The ridge is centred at X = 0. 
The regions I-IV referred to in $5.3 are illustrated. 

surface and the bed for flow adjusting from an upstream slope a = au = 5 to a down- 
stream slope a = a, = 0.2. We take s ( ~ )  = 0 for x < 0 and s ( ~ )  = (aD-au)x tanhbx 
for x > 0 with here b = 2. The depth and skin friction are sown in figure 9(b,c), 
together with results for au = 5, a, = 1, b = 1. There is an obvious jump in the 
free-surface position. For the case a, = 0.2, for which the downstream depth is 
quite large (h = 2.92) this is on the upstream slope and is short-scaled, as predicted 
in 52.2, (q  - 526 for a = 5) ,  and locally h, is large. The free surface also has the blunt 
shape predicted in 53 and seen in the free-interaction calculations of $4.2 (for the 
case a = 6). We would expect the jump to move further upstream as the downstream 
depth increased, as was seen in the lubrication solutions of $5.2. In the present 
case, however, owing to the larger Froude number, the adjustment is rapid and 
takes the form of a jump. The flow also separates within the jump and reattaches at 
some x > 0, presumably because of the influence of the bed there. For the case a, = 1, 
the downstream depth is smaller (h = 1.7) and the jump is seen to occur further 
downstream, in fact where x > 0 (x z 0.3) so that the local slope is much reduced. As 
a consequence the lengthscale of the jump is increased and the flow does not separate. 
The alteration in the depth and skin friction in the range 0 < x < 0.3 is gradual and is 
due to the local change in slope. In these solutions then we see the emergence of two 
distinct scales for the flow. The long scale over which the flow adjusts gradually and 
the short scales of the hydraulic jump. 

Figure 9 (d-f) shows the results of calculations corresponding to flow over a ridge, 
s(x) = dexp(-x2/w2) with d = 20, w = 2 and d = 24, w = 3.  These show similar flow 
characteristics to the results described above. 

6.2. Comparison with experiments 
Experiments and computations of the full Navier-Stokes equations which cover 
approximately the range tana* = O(ReP5/') or less have been performed by PST. We 
now compare the predictions of the theory developed in this paper with the results of 
these experiments. 
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FIGURE 9. Numerical solutions of the forced interaction on slopes of O(Re-'), showing the position 
of the free surface, the depth and the skin friction at the bed. See Appendix C and the text. The bed 
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In the experiments, a liquid layer of vegetable oil was allowed to flow over a pair of 
symmetrical, approximately sinusoidal, ridges placed one after the other on an 
otherwise uniform sloping bed. Great care was taken to ensure that the flow remained 
two-dimensional for as much as the channel width as possible. The slope of the bed was 
0.0735 radians and on the lee slope of the ridges the slope was 0.3 radians for a distance 
of approximately 40 mm. The ridges were 10 mm high and the peak-to-peak separation 
was 100 mm. The Reynolds number was varied between 0.369 and 36.6, giving values 
of a (see $2.2) between 0.027 and 2.69 on the bed upstream of the first ridge and 
between 0.114 and 11.3 in the lee of the ridges. 

If we consider the flow upstream of the first ridge we may compare the experimental 
results with our predictions for the flow upstream of an obstacle mounted on a small 
slope. The normalized height of the obstacle is proportional to since we 
normalize distances with the layer thickness. Thus we find that it varies from 4.6 at 
Re = 0.369 to approximately 1 at Re = 36.6. Thus the obstacle may be regarded as 
large and we should expect the flow to adjust a considerable distance upstream. This 
may be seen in figures 14 and 17 of PST, with an adjustment approximately 100 mm 
ahead of the first ridge. In addition the flow just downstream of this initial adjustment 
can be seen to have a horizontal free surface up to the vicinity of the crest of the first 
ridge, as we predict. 

The flow between the two ridges may, to a certain extent, be considered as the 
adjustment of a fully developed flow in readiness for an obstacle on the larger slopes 
since the local values of a are large. The normalized obstacle height here varies from 
7.4 for Re = 0.369 to 1.6 at Re = 36.6. A free interaction on the lee slope is clearly seen 
for Re = 0.369. The picture becomes less clear for larger Reynolds numbers since we 
cannot be sure that the flow has become fully developed half-Poiseuille flow on the lee 
slope before adjusting for the second ridge. The streamwise distance required for this 
development may be estimated as Re h* and although this is only 0.5 mm in the case 
mentioned above it is as much as 100 mm, i.e. of the order of the distance between the 
ridges, for the case Re = 20.5. For the case Re = 7.59, discussed below, it is 
approximately 28 mm and the normalized obstacle height is 2.7. 

The flow on the lee of the second ridge may be considered as a flow adjusting to a 
change in slope. The size of the disturbance to the basic flow, i.e. the ratio of the change 
in depth to the upstream depth, is here independent of Re and is 0.59. This is not very 
large and the adjustment can be seen to start very close to the end of the lee slope. This 
also ties in with the upstream-influence lengthscale being very short for these larger 
values of a, with a maximum of approximately one half of the layer depth at a = 1.55 
(Re = 5.03), and decreasing like Rea-3 as a increases (see (2.9)). This does mean 
however that the flow at the base of the slope is more likely to be fully developed than 
would be the case if the perturbation were larger. 

is given by s(x), the grid step in the x-direction is Ax and rn points are used in the normal direction, 
The error B is defined in Appendix C and the value of x+, give the extent of the grid. In (a)  and (d)  
the vertical axis is Y = y -ax + s(x) so that the lower curve represents the bed ( y = 0) and the upper 
curve the free surface ( y  = 1 +~+ax-s(x)) .  (a )  Flow from a slope 5 (aU) onto a slope of 0.2 (a,) 
i.e. s(x) = 4.8 H(x)xtanhbx, b = 2. Ax = 2.5 x 10-3-2.5 x using a stretched grid, x, = - 1 ,  
x, = 6, rn = 22, B = 5 x lo-’. (b) the depth for the case shown in (a)  together with the case 
s(x) = 4H(x)x tanhbx, b = 1 ,  a, = 1 .  Here Ax = 4.4 x 
(c)  The skin friction corresponding to the curves in (b). (d)  Flow on a slope a = 5 over the ridge given 
by s(x) = dexp(-x2/w2) with d = 20, w = 2, Ax = 2.5 x 10-”2.5 x using a stretched grid, 
x, = -6, x, = 5.5, rn = 22, E = 5 x (e)  The depth for the case shown in (d)  together with 
the case d = 24, w = 3,  Ax = 4.4 x x, = - 10, x, = 10, m = 22, B = 5 x (f) The skin 
friction corresponding to the curves in (e). 

x, = -2, x, = 5, rn = 22, E = 5 x 
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We now consider the actual free-surface shape in the adjustment regions mentioned 
above. For the smallest value of Re = 0.369, the maximum value of a which is attained 
is 0.1 1 and the flow is reminiscent of the solutions of the lubrication approximation, 
with the free surface being concave upward throughout the adjustment. The validity of 
this approximation was also noted and confirmed by PST. As the Reynolds number is 
increased the first clear evidence of a region in which the free surface is convex upwards 
in the results presented by PST occurs between the ridges at measurements taken at 
Re = 7.59 (a = 2.35). It does not seem to occur at Re = 5.03 (a = 1.55), but the 
diagram (figure 14b in PST) is not very clear on this point. This compares well with the 
predicted value of a = 1.81. Similar behaviour is also first seen in the adjustment ahead 
of the first ridge at Re = 3 1.4 (a = 2.3) although again one might argue that it is seen 
at Re = 25.5 (a = 1.87). These comparisons are very encouraging, especially as the 
theoretical predictions here arise solely from considering the free interaction and take 
no account of the proximity of the obstacle causing the adjustment. Although, as we 
mention above, the theory cannot be expected to be valid between the ridges at larger 
values of Re, where the flow is not fully developed, we can see that the flow here does 
take the general forms that we would predict as Re increases. The lengthscale of the 
adjustment becomes shorter and the maximum surface slopes increase. Figure 15 of 
PST shows the numerical results for the flow between the two ridges at Re = 20.5 and 
Re = 25.5 (a = 6.34 and a = 7.88), which agree reasonably well with the experimental 
results at these Reynolds numbers. These solutions exhibit jumps of the same general 
form as predicted in $2.3 with an initial exponential departure followed by a blunt 
profile with the main body of the flow being lifted off the bed, although the flow does 
not seem to separate. Downstream the free surface exhibits waves. We note here that 
even for the largest values of a, PST do not note separation of the liquid layer, either 
in their experimental or computational studies. We put this down to the ridge height 
being too small for the interactions to commence sufficiently far upstream. As a result 
the influence of the obstacle is soon felt by the developing flow and in particular the 
effective value of a is decreased by the forward facing slope of the ridge. 

We now turn our attention to the waves which are seen after the jumps for the larger 
values of a. We predict in $2.3 that waves are possible when the parameter 
d = tana* Re5I7 becomes O(1) as Re+ co, and that when they first appear as a* 
increases they have short wavelengths, essentially being inviscid gravity waves. For 
larger values of d their wavelength increases and they become influenced by the effects 
of viscosity and a viscous-inviscid interaction. Finally if d Re-417 becomes as large as 
0(1) the wavelength becomes effectively infinite and no waves are seen. If we 
concentrate on the flow on the lee of the second ridge this latter parameter is always 
less than 0.5 in all of the experiments reported, and again because of the small 
magnitude of the adjustment here the waves actually occur over the slope downstream 
of the ridge, effectively reducing the size of this parameter still further. We do see 
however that waves first occur at Re = 12.2 (& = 1.85) and persist up to the largest 
Reynolds number considered, Re = 36.6 (a = 4.05), and that the wavelength of the 
waves steadily increases with the Reynolds number. The behaviour is very similar to 
that in the solutions presented in BS for linearized flow over an obstacle on a horizontal 
surface as their parameter y, equivalent to d, is increased. 

7. Discussion and conclusions 
Throughout this work we make the assumption that the flows are steady and that 

the solutions we find are stable. It is well known (Benjamin 1957; Yih 1963) that half- 



Liquid-layer flows on favourable slopes 91 

Poiseuille flow down an incline of slope a* is unstable if the Reynolds number exceeds 
gcota*. This is formally quite a severe restriction since it implies that strictly the 
maximum slope for a steady flow is, in our notation, a = 5/6. This is too small either 
for there to be a rise in the position of the free surface throughout the free interaction 
or for separation to occur and makes many of our predictions for the shape of 
hydraulic jumps on larger slopes strictly invalid. The work in the limit of vanishing 
slope remains valid. However, in the experiments of PST a slight time dependence in 
the experimental results was first observed, as the Reynolds number increased, between 
the ridges at a Reynolds number corresponding to the much larger values a x 10 
(di x 3.6), so the present results are likely to be of practical value. A possible reason for 
this extension of the range of stability is that the disturbance which first becomes 
unstable as the Reynolds number or slope is increased has zero wavenumber and in any 
physical situation there must be some limit on the smallness of the disturbance 
wavenumbers that are possible. In addition the growth rates of these disturbances are 
small if the Reynolds number is just above critical and the effect of surface tension is 
to reduce these growth rates still further. 

We conclude with a list of the major results of this paper. 
(i) Half-plane Poiseuille flow is not a unique solution for steady flow of a liquid layer 

on a uniform bed. This is due to the streamwise development of eigensolutions which 
have their origin in interaction between the self-induced pressure gradient caused by 
the change in position of the free surface and viscous effects. 

(ii) The lengthscale of the development of these eigensolutions is long (O(Re)) for 
shallow slopes (O(Re-')) but decreases rapidly as the slope increases. This relatively 
rapid adjustment is associated with a locally strong adverse pressure gradient leading 
to separation of the flow from the bed and the formation of a jet beneath a horizontal 
free surface. We have associated this with a standing hydraulic jump. 

(iii) We have made predictions for the shape of the free surface during the slower 
interactions on smaller slopes. Specifically the free surface is concave upwards 
throughout the adjustment to a horizontal downstream asymptote only for 
a* < 1.814 Re-'. Separation can occur if a* > 4.712 Re-' but this is not necessarily of 
the breakaway type described in (ii) above unless a* > 5.461 Re-'. 

(iv) For slopes of O(ReP5/') the cross-stream pressure gradient caused by streamline 
curvature becomes important in the interaction process, as was also found by Gajjar 
(1987). We have considered two effects of this. First, it can cause the free surface to be 
concave upwards during the interaction, if a* - O(Re-'/'). Secondly, it may give rise 
to gravity waves downstream of the jump, as seen in the experimental and 
computational results of PST. These waves become longer and more subject to viscous 
attenuation as the slope increases. 

(v) For slopes of O(Re-l) we have presented numerical results showing that a system 
of interactive boundary-layer equations is capable of describing the steady flow of the 
layer over a large obstacle or upstream of a decrease in slope. If the slope is large, these 
results show a region of rapid adjustment far upstream of the obstacle, the standing 
hydraulic jump, and a slower scale of development as the flow passes over the obstacle. 
The hump is situated at a distance upstream proportional to the obstacle height. These 
results complement those of Higuera (1994) for flow on a horizontal surface. 

(vi) On the shallowest slopes lubrication theory may be used to describe the 
adjustment. It is worth noting that this simple ordinary differential equation exhibits 
much of the behaviour seen in full interactive boundary-layer equations for P- A laws 
that admit upstream influence, for example the emergence of a free interaction far 
upstream as the size of the perturbation increases. 



92 R. I .  Bowles 

The core elements of this work were pursued during the author's doctoral studies 
and thanks are due to SERC for financial support. Numerous discussions with 
Professor F. T. Smith are also acknowledged. Thanks are also due to the referees for 
their helpful comments. 

Appendix A. Numerical solutions of the free interaction on O(Re) 
lengthscales 

Solutions of equation (4.1) describing the liquid-layer flow down a uniform gradient 
of magnitude O(Re-') can be obtained using the following method. Here we consider 
the free interaction problem. 

To deal with the unknown position of the free surface we introduce the variable 

where h is the unknown depth of the layer and, in this instance, s = 0, since the slope 
is uniform. Then introducing a stream function Y(x, Q, 

6 = ( y - s ) / h ,  (A 1) 

UU, - Y, U,/h = -ps -k USf/h2,  U = Y</h, (A ?a,  b) 
Y = U = O  at [ = O ,  U = O ,  Y = l  at [ = 1 .  (A 2 c-f 1 

p = 331". (A 3 )  

We also have the pressure-displacement law 

The vertical velocity V is given - Y, + ([h, + s,) U. 
The conditions imposed at x = 0 are U = UppF(Q, V = 0, i.e. a velocity profile given 

by half-Poiseuille flow in a direction parallel to the slope, and h = 1 + S where 6 
represents a small perturbation to the basic undisturbed flow. 

The solutions are marched forward from this initial profile using a central-difference 
finite-difference formulation. Nonlinearity is dealt with using Newton iteration until 
successive iterates differ by less than lop6 which takes 5 or 6 iterations using the 
solution at the previous x-station as an initial guess. The stepsize in x, Ax, needed to 
be smaller for the larger values of a to maintain accuracy and similarly the number of 
points in the &direction, m, needed to be increased. The system is third order in (with 
an additional unknown h. The fourth boundary condition is used to determine h, using 
the technique described by Smith (1974). Numerically the regions of reversed flow are 
handled using the so-called Flare approximation (Reyner & Flugge-Lotz 1968) in 
which the term UU, is set equal to zero if U < 0. This is an effective and, since the speed 
of any reversed flow is usually much less than that of forward flow, quite accurate 
device for obtaining solutions. 

Appendix B. The effect of a large surface tension coefficient on the free 
interaction 

Here we consider an effect surface tension has upon the compressive free interaction 
within the context of lubrication theory. The governing equation, including capillary 
effects, is from (5.1), 

where y( > 0) measures the relative importance of surface tension and y % 1 
if surface tension dominates. This is the limit we examine here. We can write 
y as (Re sin "*) ' I3 ( and the lubrication approximation requires 
Resin a* < 1 so this limit may be relevant only in reduced-gravity situations. The 
large-X asymptote which we expect to emerge from the interaction is still h - X .  

h,-yh,,, = l-l/h3, h+ 1 as X+--oo, (B 1 a, b) 
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FIGURE 10. The asymptotic structure of the free interaction governed by equation (B 1) in the limit 
of large surface-tension coefficient y with z = Y-' '~X.  A steady nonlinear wave train upstream is 
followed by an approach of the free surface towards a horizontal asymptote from below. 

We choose a more appropriate lengthscale and write X = y113z, where z = O(1) as 
y+ 03, to get 

A similar equation is discussed by Wilson & Jones (1983, referred to herein as WJ) in 
the case of a vertical plate where the effects of the self-induced pressure gradient are 
identically zero but there is a small parameter entering through the denominator of the 
curvature term in equation (2.2 b), which they retain. We follow much of their analysis 
and refer the reader there for more detail. As a first step we consider the equation with 
y = GO. WJ show that the solution in this case consists of a nonlinear wave train of 
successive dips, in which the depth is relatively small, and leaps, in which the depth is 
large. The neglected term, here the self-induced pressure gradient, re-enters in a final 
leap, leap 0 say. We number successive leaps, moving in an upstream direction, 1, 2, 
3, ..., and the intervening dips 1,2,  3, ... . In the dips the dominant balance is between 
viscosity and surface tension, between the first terms on the left- and right-hand sides 
of (B 2a).  As a result if the depth in the ith dip, moving upstream, is of size 
h - O(Si) + 1, then the width of the dip is z - O(ql3). In each leap the balance is 
between surface tension and gravity, the first term on the left and the second term on 
the right of (B 2a).  If the depth in the ith leap is h - O(v,) with vi % 1 then the width 
is z - O(vji3). The equation governing the depth in the dip has two alternative 
asymptotes on leaving the dip, either linear or quadratic growth in h. WJ show that a 
wave train in which the amplitude of the waves decreases upstream can be generated 
by insisting that there is quadratic growth leaving the dip in a downstream direction 
but only linear growth leaving in an upstream direction. They show that this implies 
that Si+l = vT1l5 = Sj'lO. As a result, the amplitude of the wave train decreases rapidly 
upstream, giving the upstream asymptote h - 1 .  In practice only a few waves will be 
seen. 

In the final leap the z-scale is so large that the neglected term becomes important. 
This scale is z - O(y116) so that vo = y1lZ, and the scalings of all the leaps and dips 
upstream can be found. See figure 10. In this final leap the dominant balance is between 
the left-hand side and the second term on the right-hand side of (B 2a)  so that 

h,,,-y-1/3h, = 1/h3- 1, h+ 1 as z+--co. (B 2 4  b )  
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h - y1/2(y-1/6 z + B + C exp ( - y-'l6 z ) )  where the origin in z has been fixed to coincide 
with dip 1. As z + 00 the viscous-inviscid interaction is lost to first order and the free 
surface becomes horizontal with h - Y ' / ~ z  - X. As z+O+ we require the depth to 
decrease quadratically to zero so that B = - 1 and C = 1. 

Appendix C. Numerical solutions of the forced interaction on O(Re) 
lengthscales 

The solutions of (4.1) in figure 9 are obtained by a relaxation procedure on 7. We 
fix ~ ( x )  at q"(x) say, impose the upstream condition h = 1 at x = x-, and calculate the 
solution to x = x, using a method similar to that described in Appendix A and 
calculating the corresponding pressure p"(x).  The value of ~(x) is updated using the 
formula 

(C 1) 
where w is a relaxation parameter. The values of 7 at x+, remain unaltered. The 
process is repeated until a converged solution is obtained in the sense that 

yn+' = 7" + w(d/dx) (37"/a -p"), 

max Ip - 37/a I < c. (C 2) 
In all cases the procedure was started using the initial guess h = 1 except in the case 

of flow onto a different downstream slope in which case the initial guess at the depth 
rose smoothly to h = (a,/a,)-1/3 at x,. 

Typical values of e used are 0.01 or 0.005, corresponding to errors of about 1 YO or 
less since a typical value of the pressure, close to the jump say in figure 9 ( d ) ,  is - 5 .  
The value of w is typically small (lop4) so that many iterations were needed, typically 
lo5 to achieve this accuracy. Typically 22 grid points were taken in the vertical 
direction. The solutions presented here are believed to be grid independent to within 
graphical accuracy. A stretched grid in the x-direction is required to resolve the jump 
where the depth and skin friction vary rapidly. This grid was designed using the results 
from a preliminary run with a uniform grid which gave an approximate value for the 
jump position. Typical values for the x step, for figure 9(a) say, were 0.025 away from 
the jump and 0.0025 in its vicinity. Solutions on a grid which is too coarse exhibit grid- 
sized oscillations upstream of the jump. 
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